1. Spatially Preorganized Hybridization Chain Reaction for the Prompt Diagnosis of Inflammation
Bin Jia, Jingru Ge, Yuxuan Ma, Xiaolei Sun, Zhe Li*, Shuoxing Jiang*, and Hanyang Yu*
Angew. Chem. Int. Ed. 2025;e202421022.
https://doi.org/10.1002/anie.202421022
2. Chemoenzymatic Installation of Site-Specific Chemical Groups on DNA Enhances the Catalytic Activity
Ze Zhang#, Wanqing Wei#, Siqi Chen#, Jintao Yang, Dongfan Song, Yinghan Chen, Zerun Zhao, Jiawen Chen, Fulong Wang, Jiahuan Wang, Zhe Li, Yong Liang*, and Hanyang Yu*
J. Am. Chem. Soc. 2024;146(10):7052-7062.
https://doi.org/10.1021/jacs.4c00484
3. Enzymatic Synthesis of TNA Protects DNA Nanostructures
Bohe Qin#, Qi Wang#, Yuang Wang, Feng Han, Haiyan Wang, Shuoxing Jiang*, Hanyang Yu*
Angew. Chem. Int. Ed. 2024;63(13):e202317334.
https://doi.org/10.1002/anie.202317334
4. c-Myc-Targeting PROTAC Based on a TNA-DNA Bivalent Binder for Combination Therapy of Triple-Negative Breast Cancer
Xintong Li#, Ze Zhang, Fangyan Gao, Yuxuan Ma, Dongying Wei, Zhangwei Lu, Siqi Chen, Mengqi Wang, Yueyao Wang, Kun Xu, Runtian Wang, Feng Xu, Jia-Yu Chen, Chengjun Zhu, Zhe Li, Hanyang Yu*, and Xiaoxiang Guan*
J. Am. Chem. Soc. 2023;145(16):9334.
https://doi.org/10.1021/jacs.3c02619
5. Selection of RNA-Cleaving TNA Enzymes for Cellular Mg2+ Imaging
Mingmei Gao#, Dongying Wei#, Siqi Chen, Bohe Qin, Yueyao Wang, Zhe Li, Hanyang Yu*
Chembiochem. 2023;24(4):e202200651.
https://doi.org/10.1002/cbic.202200651
6. A Nucleic Acid Sequence That is Catalytically Active in Both RNA and TNA Backbones
Dongying Wei#, Yueyao Wang, Dongfan Song, Ze Zhang, Juan Wang, Jia-Yu Chen, Zhe Li, and Hanyang Yu*
ACS Synth Biol. 2022;11(11):3874.
https://pubs.acs.org/doi/full/10.1021/acssynbio.2c00479
7. DNA-catalysed alternative RNA splicing
Dongying Wei#, Mingmei Gao, Jiajie Guo, Yueyao Wang, Xintong Li, Zhe Li*, Hanyang Yu*
Chem Commun (Camb). 2022;58(55):7698.
https://pubs.rsc.org/en/content/articlelanding/2022/CC/D2CC00812B
8. Development of Novel Aptamer-Based Targeted Chemotherapy for Bladder Cancer
Yao Wang#,Yang Zhang#,Peng-Chao Li#,Jiajie Guo,Fan Huo,Jintao Yang,Ru Jia,Juan Wang,Qiju Huang,Dan Theodorescu*,Hanyang Yu*,Chao Yan*
Cancer Res. 2022; 82(6):1128.
9. An RNA-cleaving threose nucleic acid enzyme capable of single point mutation discrimination
Yueyao Wang#, Yao Wang#, Dongfan Song, Xin Sun, Zhe Li*, Jia-Yu Chen and Hanyang Yu*
Nat Chem. 2022; 14(3):350.
https://www.nature.com/articles/s41557-021-00847-3
10. A Threose Nucleic Acid Enzyme with RNA Ligase Activity
Yao Wang#, Yueyao Wang, Dongfan Song, Xin Sun, Ze Zhang, Xintong Li, Zhe Li, and Hanyang Yu*
J. Am. Chem. Soc. 2021;143(21):8154.
https://pubs.acs.org/doi/10.1021/jacs.1c02895
11. Selection of Threose Nucleic Acid Aptamers to Block PD-1/PD-L1 Interaction for Cancer Immunotherapy
Xintong Li# , Zhe Li , Hanyang Yu*
Chem Commun (Camb).2020;56(93):14653.
https://doi.org/10.1039/D0CC06032A
12. Proteomic analysis of cisplatin- and oxaliplatin-induced phosphorylation in proteins bound to Pt-DNA adducts
Xin Yuan#, Wanjun Zhang#, Yafeng He, Jian Yuan, Dongfan Song, Hao Chen, Weijie Qin*, Xiaohong Qian, Hanyang Yu*, Zijian Guo*
Metallomics. 2020;12(11):1834.
https://academic.oup.com/metallomics/article/12/11/1834/6071930
13. Aptamer-Based Western Blot for Selective Protein Recognition
Yao Wang#, Zhe Li, Hanyang Yu*
Front Chem. 2020;8:570528.
https://www.frontiersin.org/articles/10.3389/fchem.2020.570528/full
14. Direct sequencing of 2'-deoxy-2'-fluoroarabinonucleic acid (FANA) using nanopore-induced phase-shift sequencing (NIPSS).
Shuanghong Yan#, Xintong Li#, Panke Zhang, Yuqin Wang, Hong-Yuan Chen, Shuo Huang, and Hanyang Yu*
Chem Sci. 2019;10(10):3110.
https://pubs.rsc.org/en/content/articlelanding/2019/SC/C8SC05228J#!divAbstract
15. A Novel Small RNA-Cleaving Deoxyribozyme with a Short Binding Arm.
Yueyao Wang#, Jintao Yang, Xin Yuan, Jin Cao, Jiacui Xu, John C. Chaput, Zhe Li* and Hanyang Yu*
Sci Rep. 2019;9(1):8224.
https://www.nature.com/articles/s41598-019-44750-x
16. Self-Assembly of Large DNA Origami with Custom-Designed Scaffolds
Xiaoxing Chen#, Qian Wang#, Jin Peng, Qipeng Long, Hanyang Yu*, and Zhe Li*
ACS Appl. Mater. Interfaces. 2018; 10: 24344
https://pubs.acs.org/doi/10.1021/acsami.8b09222
17. An efficient and faithful in vitro replication system for threose nucleic acid
H. Yu#, S. Zhang, M. Dunn, and J. C. Chaput*
J Am Chem Soc. 2013;135(9):3583.
https://pubs.acs.org/doi/10.1021/ja3118703
18. Synthesis of threose nucleic acid (TNA) triphosphates and oligonucleotides by polymerase-mediated primer extension
S. Zhang#, H. Yu, and J. C. Chaput*
Curr Protoc Nucleic Acid Chem. 2013;Chapter 4:Unit 4.54.
https://currentprotocols.onlinelibrary.wiley.com/doi/10.1002/0471142700.nc0454s52
19. Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenito
H. Yu#, S. Zhang#, and J. C. Chaput*
Nat Chem. 2012;4(3):183.
https://www.nature.com/articles/nchem.1241
20. The emerging world of synthetic genetics
J. C. Chaput#*, H. Yu, and S. Zhang
Chem Biol. 2012;19(11):1360.
https://www.sciencedirect.com/science/article/pii/S1074552112004127?via%3Dihub
21. Aptamers can discriminate alkaline proteins with high specificity
H. Yu#, B. Jiang, and J. C. Chaput*
Chembiochem. 2011;12(17):2659.
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cbic.201100252
22. Generating DNA synbodies from previously discovered peptides
R. Liu#, B. Jiang, H. Yu, and J. C. Chaput*
Chembiochem. 2011;12(12):1813.
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cbic.201100284